REPORT OF GEOTECHNICAL INVESTIGATION

FOR

CONSTRUCTION OF AIIMS AT GUNTUR, ANDHRA PRADESH

REPORT NO : GT - 1764

CLIENT:

DEPUTY GENERAL MANAGER (CIVIL)

HSCC (INDIA) LTD.

(A Govt. Of India Enterprise)
(CONSULTANTS & ENGINEERS FOR MEGA HOSPITALS & LABORATORIES)
E-6(A), sector-1, NOIDA (U.P) 201301 (India)

SUBMITTED BY:

SOIGNÉ ENGINEERING CONSULTANTS

H.O: S.C.F. 23, M.M, Manimajra, Chandigarh Contact No. 0172-4007236 Email: info@soigneconsult.com

Job No. Page No.

SOIL INVESTIGATION TEST REPORT

GT-1764

CONTENTS

S. No.	Description	Page No.
1	INTRODUCTION	1
2	SCOPE OF WORK	1
3	DETAILS OF FIELD WORK	2
4	GROUND WATER TABLE	4
5	OBSERVATIONS AND DISCUSSIONS	4
6	LABORATORY TESTS	4
7	FOUNDATION PARAMETERS	5
8	ESTIMATION OF ALLOWABLE BEARING CAPACITY	5
9	COMPUTATION OF ALLOWABLE BEARING CAPACITY	6
10	RECOMMENDATIONS	11
11	LIST OF I.S. CODES	12
12	NOTATIONS	14
13	BORELOG SHEET	17
14	BOREHOLE SHEET	28
15	DIRECT SHEAR TEST	43
16	DYNAMIC CONE PENETRATION TEST	68
17	HYDROLOGY REPORT	

SOIL INVESTIGATION TEST REPORT

Job No.	Page No.
GT-1764	1

1. INTRODUCTION

The present report deals with the Geotechnical field and lab investigations conducted for Construction of AIIMS at Guntur, Andhra Pradesh. The work was taken in hand on Behest of DGM (Civil), HSCC (I) Ltd.

The objective of the report is restricted to the factual information to be collected during the investigation period along with laboratory tests results and so as to obtain sequence & extent of soil so as to arrive at design parameters for the foundations from the recommended safe bearing capacity of foundation soil.

2. SCOPE OF WORK

- **2.1.** Reconnaissance / field trip for studying the general topography and geology of the area/ terrain
- **2.2.** The field Geotech investigations consisted of conducting 12 nos. of bore holes for SPT/DCPT up to maximum depth of 20.0 m or refusal and 12 nos. of DCPT upto maximum explored depth of 20 m or refusal, below N.S.L whichever is earlier as per IS code.
- **2.3.** Conducting SPT/DCPT in the bore-hole/trial pits at regular intervals and collecting disturbed/undisturbed soil samples from the bores hole at regular intervals and conducting field density tests as per Indian code of practice.
- **2.4.** Conducting Plate Load Test using 75 cm square plate at 1 nos of locations and Collection of Disturbed & Undisturbed Sample & Preparation of Test Reports.
- **2.5.** Recording of water table level in the bore holes at the time of boring (if encountered).
- **2.6.** Conducting laboratory tests on the samples collected and thereby determining various index and engineering properties and summarizing the detail of soil classification.
- **2.7.** A comprehensive Geotechnical investigation report embodying all the above information along with tables of Field / Lab tests results and bearing capacity computations.

SOIL INVESTIGATION TEST REPORT

Job No.	Page No.
GT-1764	2

3. DETAILS OF FIELD WORK

3.1. BORING/TRIAL PITS OPERATION & SAMPLING

150 mm dia hole was advanced at the location by Manual/mechanical boring and steel casing was advanced with the boring and the full length of the bore hole was encased at each bore location. However in case of Boulder/rocky Strata, trial pits were excavated and SPT/DCPT was conducted upto maximum depth of 20.0m or refusal, whichever is earlier.

3.2. DISTURBED AND UNDISTURBED SAMPLE

Disturbed and undisturbed soil samples were obtained depending upon the nature of soil from different depths in the bore hole. The undisturbed samples were collected in sampling tubes. The ends of the tubes are sealed with molten wax to prevent evaporation. These samples were subsequently tested in the laboratory so as to determine the various index and engineering proportion of various sub soil strata met in the bore holes.

3.3. STANDARD PENETRATION TESTS (SPT)

Standard Penetration Test was performed in the borehole. The standard split spoon sampler, attached to a string of drill rods was lowered to the bottom of the hole and allowed to rest under self weight. The drill rods were connected to driving assembly which consisted of a hoisting equipments, a drive weight (Hammer) of 63.5 Kg, and a guide to ensure a 75 cm free fall of hammer on an anvil. The number of hammer blows that were required to penetrate the sampler through three runs of 150 mm each were recorded. Initial driving of 150 mm was disregarded and the number of blows required to drive the sampler through the remaining 300 mm is called BLOW COUNT or PENETRATION NUMBER,N. At the end of the test, the sampler was withdrawn and the soil extracted for subsequent testing in the laboratory. If the penetration was less than 30 cm for 50 blows, it is considered as refusal and the actual penetration was recorded.

SOIL INVESTIGATION TEST REPORT

Job No.	Page No.
GT-1764	3

3.4. DYNAMIC CONE PENETRATION TEST

1. Dynamic Cone penetration Tests is carried out in open pits up at required depth at suitable intervals by driving a standard cone of outside diameter 50 mm and having an apex angle of 60° attached to a string of drill rods using a hammer weighing 63.5 kg falling freely through a height of 75.0 cm. The total number of blows required for the 30.0 cm penetration is termed Cone penetration Resistance or ' N_{cd} ' value. N_{cd} value is correlated with SPT value, N_{cd} as under:

$$N_{cd} = 1.5 N$$

2. Refusal is deemed to have met if under 35 blows, penetration achieved is less than 10 cms. The above correlation is meant for sandy soils. In boulder deposit / rocky strata evaluation of strength and compressibility characteristics by using elaborate tests is uneconomical for a type of structure proposed to be constructed at site. As a conservative approach, the above correlation can be used such strata to arrive at a safe value of 'N' that takes care of the highly erratic vibrations of properties such strata. Once value of 'N' based on least N_{cd} value is known, then bearing capacity analysis can be performed as done in case of Sandy deposits.

3.5. CORRECTION OF 'N'- VALUES

In case of sandy/cohesion-less soil, the observed SPT values, designated as 'N', are to be corrected to account for the following two effects:

a) Correction due to effect of overburden pressure,

$$N_N = C_N \times N$$

 C_N' is overburden pressure correction and is calculated as $C_N = 0.77 \log_{10}(200/\sigma_0)$.

b) Correction due to submerge effect (in case of fine sand and silt),

$$N_c$$
 =15 + (N_N -15)/2, provided N_N >15. Else N_C = N_N

Where 'N_c' is the final corrected value.

SOIL INVESTIGATION TEST REPORT

Job No.	Page No.
GT-1764	4

4. GROUND WATER TABLE

Determination of Ground water Table and water depth from Existing Ground level was done using Steel tape with weigh. The depth of Ground water table was determined as per procedure laid in IS 6935-1973. At the time of Soil Investigation at site, ground water table was not encountered till the explored depth from Existing Ground Level.

5. OBSERVATION AND DISCUSSIONS

From the field borehole logs, the laboratory test result and the visual examination of soil samples indicates the following type of strata in the bore holes.

5.1. SOIL CLASSIFICATION & GENERAL NATURE OF THE SOIL STRATA:

Classification and identification is the pre—requisite of any site investigation report. The sub soil strata are classified on the basis of lab tests as per IS: 1498 -1978. The classification on the soil samples were obtained from the % age of grain size distribution of gravel sand silt and clay in different layers of deposit met at site. The classification soil groups are given in the data sheets attached.

6. LABORATORY TESTS

6.1. Index Properties [As per SP 36 (Part-I)-1987]

All the relevant classification on the samples obtained from the four bore holes were carried out in the laboratory. The index properties obtained from such classification tests at different depths in the bore holes are reported in the bore hole log sheets.

6.2. UNDISTURBED SOIL SAMPLES:

Undisturbed soil sample collected in field have been tested in laboratory and preparation of sample for the under mentioned tests have been done in accordance with I.S.2720-(Part-I)-1983.

- 1. Sieve analysis test as per I.S. Specification No. 2720 -- (Part-IV).
- 2. Atterberg limit test (L.L. & P.I.) as per I.S. Specification No. 2720 -- (Part-II).
- 3. Natural moisture content as per I.S. Specification No.2720 (Part-IV).
- 4. Particle size analysis test as per I.S. Specification No. 2720-(Part-VI).
- 5. Wet density test as per I.S. Specification No 2720- (Part-VI).

SOIL INVESTIGATION TEST REPORT

Job No.	Page No.
GT-1764	5

- 6. Dry density test as per I.S. Specification No. 2720- (Part-VI)
- 7. Specific Gravity test as per I.S. Specification No-2720-(Part-III)-Sec.2.
- 8. Triaxial compression test and determination of shear parameter (C & Ø as per I.S. XII) & I.S. 2720 (part XIII).
- 9. Consolidation test conducted as per I.S Specification No. 2720- (Part-XV).

6.3. DISTURBED SOIL SAMPLES:

Disturbed Soil samples have been prepared in accordance with I.S. Specification No. 2720- (Part-I)-1983 and tested as follows:-

- 1. Sieve analysis test as per I.S. Specification No. 2720- (Part- IV).
- 2. Atterberg limit test (L.L.. & P.I..) as per I.S. Specification No. 2720 -- (Part-II).
- 3. Particle size analysis test as per I.S. Specification No. 2720-(Part-VI).

Calculation of bearing capacity is governed generally by I.S. Specification No. 8009- (Part-I)-1976, I.S.No.2720- (Part – II)- 1980, I.S. No 6403-1981, I.S. 1904-1978 and I.S. 1080-1985 and other relevant I.S. Codes as well as based on assessment and latest developments.

Test results are shown in the respective borehole data sheets.

7. FOUNDATION PARAMETERS

Allowable Bearing capacity values are based on the following parameters

Table 1: Foundation Parameters

S No.	Type of Footing	Foundation Size	Foundation Depth(m)
1.	Isolated Footing	4.0 x 3.0 m	
2.	Isolated Footing	4.0 x 4.0 m	1.5 m, 2.5 m & 3.5 m
3.	Raft Footing	15.0 x 10.0 m	

8. ESTIMATION OF ALLOWABLE BEARING CAPACITY

A foundation can fail by two modes i.e.

- i) Shear failure.
- ii) Excessive settlement.

SOIL INVESTIGATION TEST REPORT

Job No.	Page No.
GT-1764	6

Shear failure being catastrophic, an adequate factor of safety is applied to ultimate bearing capacity that can initiate this type of failure. BIS recommends a value of FOS = 2.5 to obtain the net safe bearing capacity q_{ns} by using the physical characteristics of the foundation and relevant shear strength parameters of soil.

Settlement analysis a net loading intensity q_n is obtained by using the physical characteristics of the foundation and the relevant compressibility characteristics of the Underlying soil. The value so obtained ensures that the foundation shall not settle more than that which is permissible as per BIS recommendations. The permissible settlement depends upon the type of superstructure and the nature of supporting strata.

The lesser of these computed values i.e. q_{ns} or q_n is adopted as the allowable bearing capacity for proportioning the foundation of superstructures

9. COMPUTATION OF ALLOWABLE BEARING CAPACITY

Table 2: SPT N-Value and Angle of Shearing Resistance

	Depth	Minimum	Angle of Shea	Angle of Shearing Resistance, Φ				
S.No. (m) Average N-Value		(m) Average from fig 9, IS: from shear failure		Cohesion, c (t/m²)				
1.	1.5	14	31.5	29.5	-			
2.	2.5	19	32.5	30.3	-			
3.	3.5	26	34.4	31.2	-			

SHEAR FAILURE ANALYSIS

Net Ultimate bearing capacity for general shear failure,

$$q_{nu} = c N_c S_c D_c + q (N_q-1) S_q D_q + \frac{1}{2} B \gamma N_v S_v D_v W'$$
 -----(1

Net Ultimate bearing capacity for local shear failure,

$$q_{nu} = 2/3 \text{ c } N_c S_c D_c + q (N'_q-1) S_q D_q + \frac{1}{2} B \gamma N'_{\nu} S_{\nu} D_{\nu} W'$$
 ------(2)

Shape factors,

For Strip Footing:

$$S_c = 1$$
 ; $S_q = 1$; $S_{\gamma} = 1$

For Rectangle Footing:

$$S_c = 1 + 0.2 \text{ B/L}$$
 ; $S_q = 1 + 0.2 \text{ B/L}$; $S_{\gamma} = 1 - 0.4 \text{ B/L}$

For Square Footing:

Job No.

Page No.

SOIL INVESTIGATION TEST REPORT

; $S_a = 1.2$

GT-1764

 $S_{V} = 0.8$

7

 $S_c = 1.3$

;
$$S_q = 1.2$$
 ; $S_y = 0.6$

Depth factors,

$$d_c = 1 + 0.2 \text{ x D/B Tan}(45 + \Phi/2)$$
 ; $d_q = d_y = 1 + 0.1 \text{ x D/B Tan}(45 + \Phi/2)$

(For Cohesive soil, $\Phi = 0$)

 $S_c = 1.3$

Inclination Factors,

$$i_c = 1.0$$

$$= 1.0$$
 ; $i_q = 1.0$

$$; i_V = 1.0$$

SETTLEMENT ANALYSIS

As per BIS recommendation permissible settlement for both isolated column footing and raft footing on cohesion less soil is 50 mm and 75 mm respectively. Because of the erratic and pronounced variations of the compressibility characteristics of supporting strata, even slight differential settlement can cause distress to superstructure. As such differential settlement should be kept as low as possible. Depending upon the ability of the strata to absorb settlements, maximum permissible settlement is conservatively chosen so that resultant differential settlements do not cause distress to the superstructure. . However based on experience and to be on more conservative side, maximum permissible settlement for isolated and raft footing on cohesion less soil has been considered as 50mm.

Max. Settlement in cohesion less soil is calculated from IS 8009(Part I):1976, from fig.9

SOIL INVESTIGATION TEST REPORT

Job No.	Page No.
GT-1764	8

ISOLATED FOOTING (4.0 M x 4.0 M)

Depth of Footing, D = 1.5 m, 2.5 m, 4.0 m

Width of Footing, B = 4.0 mDensity, γ = 2.07 t/m^3

Table 3: Shear Parameters

Depth of	Angle of	Mobilized angle of	Bearing Capacity Factors			
Footing	internal friction, Ø	internal friction, Ø'	N_c	N_{q}	N _y	
1.5 m	29.5	20.66	15.61	6.97	6.12	
2.5 m	30.3	21.28	16.34	7.49	6.80	
3.5 m	31.2	21.98	17.17	8.09	7.57	

Table 4: Shape & Depth Factor

Depth of		Shape Factors		Depth Factors		Surcharge	Water Table	
Footing	S _c	\mathbf{S}_{q}	Sy	D_c	D_{q}	D _y	(YxD), q (t/m²)	Correction Factor, W'
1.5 m	1.30	1.20	0.80	1.129	1.064	1.064	3.105	1.0
2.5 m	1.30	1.20	0.80	1.218	1.109	1.109	5.175	1.0
3.5 m	1.30	1.20	0.80	1.310	1.155	1.155	7.245	1.0

Calculation of bearing capacity from Local shear failure

Substituting values in equation, $q_{nu} = q (N'_q-1) S_q D_q + \frac{1}{2} B \gamma N'_{\gamma} S_{\gamma} D_{\gamma} W'$

 $q_{ns} = q_{nu}/FOS = q_{nu}/2.5$

Table 5: Safe bearing capacity in Shear Criteria

Foundation Size	Depth of Foundation	Net Ultimate Bearing Capacity, q _{nu}	Net Safe Bearing Capacity, q _{nS}
	1.5 m	45.24 t/m ²	18.09 t/m ²
Isolated Footing	2.5 m	69.69 t/m ²	27.87 t/m ²
4.0 x 4.0 m	3.5 m	100.20 t/m ²	40.08 t/m ²

SETTLEMENT ANALYSIS

Max. Settlement in cohesion less soil is calculated from IS 8009(Part I):1976, from fig. 9

Table 6: Settlement in Cohesion less Soil

Foundation Size	Depth of Footing	N-Value	Settlement per unit pressure from fig 9	Net Settlement Δ (mm)
Tooloked feeting	1.5 m	14	24	43.41
Isolated footing (4.0 m x 4.0 m)	2.5 m	19	17	47.37
(4.0 III X 4.0 III)	3.5 m	26	12	48.96

Net Settlement, Δ < 50 mm, Hence safe

SOIL INVESTIGATION TEST REPORT

Job No.	Page No.	
GT-1764	9	

ISOLATED FOOTING (4.0 M x 3.0 M)

Depth of Footing, D = 1.5 m, 2.5 m, 3.5 m

Width of Footing, B = 3.0 mDensity, γ = 2.07 t/m^3

Table 7: Shear Parameters

Depth of	Angle of	Mobilized angle of	Bearing Capacity Factors			
Footing	internal friction, Ø	internal friction, Ø'	N_c	N_{q}	N _y	
1.5 m	29.5	20.66	15.61	6.97	6.12	
2.5 m	30.3	21.28	16.34	7.49	6.80	
3.5 m	31.2	21.98	17.17	8.09	7.57	

Table 8: Shape & Depth Factor

Depth of	9	Shape Factors			Depth Facto	rs	Surcharge	Water Table
Footing	S _c	Sq	Sy	D_c	D_{q}	D _y	(YxD), q (t/m²)	Correction Factor, W'
1.5 m	1.15	1.15	0.70	1.171	1.086	1.086	3.105	1.0
2.5 m	1.15	1.15	0.70	1.290	1.145	1.145	5.175	1.0
3.5 m	1.15	1.15	0.70	1.414	1.207	1.207	7.245	1.0

Calculation of bearing capacity from Local shear failure

Substituting values in equation, $q_{nu} = q (N'_q-1) S_q D_q + \frac{1}{2} B \gamma N'_v S_v D_v W'$

 $q_{ns} = q_{nu}/FOS = q_{nu}/2.5$

Table 9: Safe bearing capacity in Shear Criteria

		9 . ,	
Foundation	Depth of	Net Ultimate Bearing	Net Safe Bearing
Size	Foundation	Capacity, q _{nu}	Capacity, q _{nS}
	1.5 m	37.58 t/m ²	15.03 t/m ²
Isolated Footing	2.5 m	61.18 t/m ²	24.47 t/m ²
4.0 x 3.0 m	3.5 m	91.18 t/m ²	36.47 t/m ²

SETTLEMENT ANALYSIS

Max. Settlement in cohesion less soil is calculated from IS 8009(Part I):1976, from fig. 9

Table 10: Settlement in Cohesion less Soil

Foundation Size	Depth of Footing	N-Value	Settlement per unit pressure from fig 9	Net Settlement Δ (mm)
To allahad for alling	1.5 m	14	20	30.06
Isolated footing (4.0 m x 3.0 m)	2.5 m	19	15	36.70
(4.0 III X 3.0 III)	3.5 m	26	9.5	34.64

Net Settlement, Δ < 50 mm, Hence safe

SOIL INVESTIGATION TEST REPORT

Job No.	Page No.	
GT-1764	10	

RAFT FOOTING (15.0 M x 10.0 M)

Depth of Footing, D = 1.5 m, 2.5 m, 4.0 m & 7.0 m

Width of Footing, B = 10.0 m Density, γ = 2.07 t/m³

Table 11: Shear Parameters

		· · · · · · · · · · · ·				
Depth of	Angle of	Angle of internal	Bearing Capacity Factors			
Footing	Internal triction		N _c	N _q	N _y	
1.5 m	29.5	20.66	15.61	6.97	6.12	
2.5 m	30.3	21.28	16.34	7.49	6.80	
3.5 m	31.2	21.98	17.17	8.09	7.57	

Table 12: Shape & Depth Factor

Depth of	9	Shape Factors		Depth Factor		rs	Surcharge	Water Table
Footing	S _c	Sq	Sy	D _c	\mathbf{D}_{q}	D _y	(YxD), q (t/m²)	Correction Factor, W'
1.5 m	1.13	1.13	0.73	1.051	1.026	1.026	3.105	1.0
2.5 m	1.13	1.13	0.73	1.087	1.044	1.044	5.175	1.0
3.5 m	1.13	1.13	0.73	1.124	1.062	1.062	7.245	1.0

Calculation of bearing capacity from Local shear failure

Substituting values in equation, $q_{nu} = q (N'_q-1) S_q D_q + \frac{1}{2} B \gamma N'_{\gamma} S_{\gamma} D_{\gamma} W'$

 $q_{ns} = q_{nu}/FOS = q_{nu}/2.5$

Table 13: Safe bearing capacity in Shear Criteria

Foundation Size	Depth of Foundation	Net Ultimate Bearing Capacity, q _{nu}	Net Safe Bearing Capacity, q _{nS}	Reduced Safe Bearing Capacity, q _{ns}
	1.5 m	69.19 t/m ²	27.67 t/m ²	19.50 t/m ²
Raft Footing	2.5 m	93.61 t/m ²	37.44 t/m ²	27.00 t/m ²
15.0 x 10.0 m	3.5 m	122.88 t/m ²	49.15 t/m ²	41.00 t/m ²

SETTLEMENT ANALYSIS

Max. Settlement in cohesion less soil is calculated from IS 8009(Part I):1976, from fig. 9

Table 14: Settlement in Cohesion less Soil

Foundation Size	Depth of Footing	N-Value	Settlement per unit pressure from fig 9	Net Settlement Δ (mm)
Tabletad fastina	1.5 m	14	25	48.75
Isolated footing (15.0 m x 10.0 m)	2.5 m	19	18	48.60
(13.0 III X 10.0 III)	3.5 m	26	12	49.20

Net Settlement, Δ< 50 mm, Hence safe

SOIL INVESTIGATION TEST REPORT

Job No.	Page No.
GT-1764	11

10. COMPUTATION OF ALLOWABLE BEARING CAPACITY FROM PLATE LOAD

TEST

For proposed foundation the computations have been done for the open foundation at 2.0 m from existing Ground Level. These analyses and test results have been reported below:

From PLT-1,

Foundation Size 4.0 m x 4.0 m

Ultimate bearing capacity from load settlement curve (q_{up}) = 17.3 t/m²

Ultimate bearing capacity for Foundation (q_{uf})= 17.3 x 4.0 /0.75 = 92.26 t/m²

Using FOS = 3.0, net allowable bearing capacity, $q_f = q_{uf}$ /FOS

 $=36.90 \text{ t/m}^2$.

SETTLEMENT ANALYSIS

From settlement consideration, the settlement of the test plate S_p of width B_{P_r} corresponding to settlement S_f for a foundation width of B_f can be worked out from the following equation,

 $S_f = S_p [\{B \times (B_p + 0.3)\} / \{B_p \times (B + 0.3)\}]^2$

Where B_p and B_f are in cm.

S_f = Maximum Permissible Settlement = 20 mm

 B_p = Width of plate

 B_f = Width of footing

 S_p = Maximum Settlement of plate

 q_s = Bearing Capacity of Foundation from Load Settlement Curve

S.No	Location	Settlement of Plate	Allowable Pressure
		(mm)	(t/m²)
		For 4.0m Wide Footing	For 4.0 m Wide Footing
1.	PLT - 1	29.5 mm	Greater than 50.00

SOIL INVESTIGATION TEST REPORT

Job No.	Page No.
GT-1764	12

11.ESTIMATION OF MODULUS OF SUBGRADE REACTION (K-VALUE)

Modulus of Sub grade Reaction (k) is required for foundation & Calculated as per IS 9214-1979 and is estimated from Plate Load Test data.

For PLT

By equation,

$$K = p/0.125 \text{ Kgf/cm}^2/\text{cm}$$

Where,

'K' = Modulus of Sub grade Reaction

p' = load intensity required for unit settlement from load-settlement curve at figure 1 which is 1.71 Kgf/ cm²/cm

Therefore, k = 1.71/0.125

 $= 13.68 \text{ Kg/cm}^2/\text{cm}$

SOIL INVESTIGATION TEST REPORT

Job No.	Page No.
GT-1764	13

12. RECOMMENDATIONS

Recommended bearing capacity for different types of foundation may be assumed as follow:

Table 15: Recommendations

Type of		At 1.5 m depth		At 2.5 m depth		At 3.5 m depth	
S.No	foundation	$(q_a)_{net}$ (t/m^2)	(q _a) _{gross} (t/m²)	(q _a) _{net} (t/m²)	(q _a) _{gross} (t/m²)	(q _a) _{net} (t/m²)	$(q_a)_{gross}$ (t/m^2)
1.	Isolated Footing	15.03	18.13	24.47	29.64	36.47	43.71
2.	Raft Foundation	19.50	22.60	27.00	32.17	41.00	48.24

Modulus of Sub Grade (K- Value) = 13.68 Kg/cm²/cm

Note:

- 1. Sub Soil Profile observed was predominantly red colored medium dense poorly graded sand with traces of laterite gravel upto 5.0 m and beyond 5.0 m upto explored depth dense sand and laterite gravel mixture was observed.
- 2. Subsoil below foundation level should be properly compacted before laying of Foundation.
- 3. The area under investigation falls under seismic zone-III as per India seismic code.
- 4. It is also suggested that the backfilling of the foundation soil should be well compacted in layer at optimum moisture content to achieve at least 95% of proctor density, followed by suitable plinth protection & effective drainage system.
- 5. For any other size and depth of footing bearing capacity of soil can be calculated from the data provided.

SOIL INVESTIGATION TEST REPORT

Job No.	Page No.
GT-1764	14

ANNEXURE A

Table 16: Plate Load Test Results

Load (Kg)	Load Intensity		um Settlement of I 1mm Least Count	
	(t/m²)	Dial Gauge - 1	Dial Gauge - 2	Average
0	0.00	0	0	0
3125	5.67	20	18	19
6250	11.23	66	60	63
9375	16.78	119	120	120
12500	22.34	194	201	198
15625	27.89	281	275	278
18750	33.45	362	336	349
21875	39.00	418	398	408
25000	44.56	455	443	449

LOAD INTENSTIY v/s SETTLEMENT PLOT

SOIL INVESTIGATION TEST REPORT

Job No.	Page No.
GT-1764	15

LOCATION MAP

Construction of AIIMS at Guntur, Andhra Pradesh

SOIL INVESTIGATION TEST REPORT

Job No.	Page No.
GT-1764	16

LIST OF I.S. CODES

FIELD INVESTIGATION:

1.	IS: 1498 – 1970	:	Classification and Identification of soils for general engineering purpose (First Revision).
2.	IS : 1892 – 1979	:	Code of practice for sub surface investigation for foundations (First Revision).
3.	IS : 2131 – 1981	:	Method of Standard Penetration Tests for soils.
4.	IS: 2132 – 1986	:	Code of practice for thin walled tube sampling of soils (Second Revision).
5.	IS: 4968 - 1976 (Part - 3)		Method of sub surface sounding for soils : Static cone penetration test.

LABORATORY TESTS:

1.	IS 2720 - 1983 (Part - 1)	•	Methods of test for soils : Preparation of dry soil sample for various tests (Second Revision).
2.	IS: 2720 - 1980 (Part - 2)	:	Method of test for soils : Determination of water content (Second Revision).
3.	IS: 2720 - 1980 (Part - 3) (Section - 1)	:	Method of test for soils : Determination of Specific Gravity : Fine Grained Soils.
4.	IS: 2720 - 1980 (Part - 3) (Section - 2)	•	Method of test for soils : Determination of Specific Gravity : Fine, Medium, Coarse Grained Soils (First Edition).
5.	IS: 2720 - 1985 (Part - 4)	:	Method of test for soils : Grain Size Analysis.
6.	IS: 2720 - 1985 (Part - 5)	:	Method of test for soils : Determination of liquid & plastic limit (Second Revision).
7.	IS: 2720 - 1986 (Part - 15)	:	Method of test for soils : Determination of consolidation properties (First Revision).
8.	IS: 2809 – 1972	:	Method of test for soils : Glossary of terms & symbols relating to soil engineering.

SOIL INVESTIGATION TEST REPORT

Job No.	Page No.
GT-1764	17

FOUNDATION CONSTRUCTION:

1.	IS : 1080 – 1986	:	Code of practice for design and construction of shallow foundations on soils (other than raft, ring and shell) (Second Revision).
2.	IS : 1904 – 1986	:	Code of practice for design and construction of foundation in soils : General requirements.
3.	IS: 1080 – 1986	:	Code of practice for design and construction of shallow foundations on soils (other than raft, ring and shell) (Second Revision).
4.	IS 6403 – 1981	:	Code of practice for determination of bearing capacity of shallow foundations.
5.	IS 8009 – 1976 (Part – 1)	:	Code of practice for calculations of settlements of foundations : shallow foundations subject to symmetrical static vertical loads.

Job No. Page No.

SOIL INVESTIGATION TEST REPORT

GT-1764

18

NOTATIONS USED

N = Observed SPT value

 C_N = Correction factor

 N_N = Corrected SPT values

 γ = Bulk unit weight

 γ' = Submerged unit weight

 γ_d = Dry unit weight

 γ_{sat} = Saturated unit weight

G = Specific gravity of soil

 W_L = Liquid limit

 W_P = Plastic limit

 I_P = Plasticity index

 Q_u = Unconfined compressive strength

 C_u = Undrained shear strength

C = Effective cohesional parameter

Ø = Effective angle of shearing resistance

 \emptyset_{m} = Mobilized angle of shearing resistance

 $N \emptyset$ = Flow value $Tan^2 (45 + \emptyset / 2)$

GSF = General shear failure

LSF = Local shear failure

 C_c = Compression index

B = Width of foundation

L = Length of foundation

D = Depth of foundation

Construction of AIIMS at Guntur, Andhra Pradesh

q

SOIGNÉ ENGINEERING CONSULTANTS

Job No.	Page No.
GT-1764	19

SOIL INVESTIGATION TEST REPORT

=	Effective surcharge

 N_{y} , N_{q} , $\& N_{c}$ = Bearing capacity factors

 S_{y} , S_{q} , & S_{c} = Shape factors

 d_{v} , d_{q} , & d_{c} = Depth factors

S.S.W.L. = Sub soil water level

W' = W.T. correction factor

H = Thickness of clayey layer

 σ'_{o} = Original effective overburden pressure

 $\Delta \sigma$ = Vertical stress increment

e _o = Original void ratio

w = Water content

 H_t = Thickness of sandy layer

 B_t = Top width of sandy layer

 $\Delta \sigma_t$ = Stress increment at the top of a sandy layer

 D_f = Depth factor

 L_{yf} = Lateral yield factor

 R_f = Rigidity factor

 q_{nf} = Net ultimate bearing capacity

 q_{ns} = Net safe bearing capacity against shear failure

 q_n = Net foundation loading intensity for a given settlement

q_a = Allowable bearing capacity

S_o = Settlement due to a net unit foundation loading intensity

S_{ob} = Settlement due to a net unit foundation loading intensity

under submerged conditions (1Kg / cm²)

Construction of AIIMS at Guntur, Andhra Pradesh

Job No.	Page No.

SOIL INVESTIGATION TEST REPORT

GT-1764

20

WT = Water table

 S_t = Total settlement

S_a = Maximum allowable settlement

GW = Well graded gravels

GP = Poorly graded gravels

GM = Silty gravels

GC = Clayey gravels

SW = Well graded sands

SP = Poorly graded sands

SM = Silty sands

SC = Clayey sands

ML = Silt of low compressibility

CL = Clay of low plasticity

MI = Silt of medium compressibility

CI = Clay of medium plasticity

MH = Silt of high compressibility

CH = Clay of high plasticity

M(NP) = Non plastic silt

ML-CL = Mixture of ML and CL

JOB NO. - GT-1764

Bore Hole - 1

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Client :- Deputy General Manager (Civil), HSCC (I) Ltd BORE LOG SHEET (as per IS 1892:1979)

Location : As per Location Map **Starting Depth** 0.0 m from EGL

Ground Water Level : Nill **Termination Depth** 10.5 m

			Soil T	уре		Sa	mple	Penetr Val		SPT 'N' PROFILE				
S.No.	Depth from EGL (m)	Description of Strata	Soil Legend	Symbolic Representation	Thickness of Strata	Туре	Sample No.	OBSERVED SPT N- VALUE	CORRECTED SPT N-VALUE	Depth v/s SPT N- value Graph				
1	0.75					DCPT	DCPT 1/1	9.0	6.0					
2	1.50	Medium Dense Poorly				DCPT	DCPT 1/2	14.0	9.3					
3	3.00	Graded Red Gravelly Soil			4.50	DCPT	DCPT 1/3	19.0	12.7	•				
4	4.50		SP			DCPT	DCPT 1/4	26.0	17.3					
5	6.00	Dense Poorly Grade Red Gravelly Soil								DCPT	DCPT 1/5	34.0	22.7	
6	7.50				6.00	DCPT	DCPT 1/6	37.0	24.7					
7	10.50					DCPT	DCPT 1/7	50.0	33.3					

JOB NO. - GT-1764

Bore Hole - 2

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Client :- Deputy General Manager (Civil), HSCC (I) Ltd BORE LOG SHEET (as per IS 1892:1979)

Location : As per Location Map **Starting Depth** 0.0 m from EGL

Ground Water Level : Nill **Termination Depth** 10.5 m

			Sa	mple	Penetr Val		SPT 'N' PROFILE							
S.No.	Depth from EGL (m)	Description of Strata	Soil Legend	Symbolic Representation	Thickness of Strata	Туре	Sample No.	OBSERVED SPT N- VALUE	CORRECTED SPT N-VALUE	Depth v/s SPT N- value Graph				
1	0.75					DCPT	DCPT 2/1	9.0	6.0					
2	1.50	Medium Dense Poorly				DCPT	DCPT 2/2	15.0	10.0	•				
3	3.00	Graded Red Gravelly Soil			4.50	DCPT	DCPT 2/3	21.0	14.0					
4	4.50		SP			DCPT	DCPT 2/4	29.0	19.3	•				
5	6.00	Dense Poorly Grade Red Gravelly Soil								DCPT	DCPT 2/5	35.0	23.3	
6	7.50					6.00	DCPT	DCPT 2/6	42.0	28.0				
7	10.50					DCPT	DCPT 2/7	52.0	34.7					

JOB NO. - GT-1764

Bore Hole - 3

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Client :- Deputy General Manager (Civil), HSCC (I) Ltd BORE LOG SHEET (as per IS 1892:1979)

Location : As per Location Map **Starting Depth** 0.0 m from EGL

Ground Water Level : Nill **Termination Depth** 10.5 m

			Soil Type			Sa	mple	Penetr Val		SPT 'N' PROFILE			
S.No.	Depth from EGL (m)	Description of Strata	Soil Legend	Symbolic Representation	Thickness of Strata	Туре	Sample No.	OBSERVED SPT N- VALUE	CORRECTED SPT N-VALUE	Depth v/s SPT N- value Graph			
1	0.75					DCPT	DCPT 3/1	10.0	6.7				
2	1.50						DCPT	DCPT 3/2	14.0	9.3			
3	3.00	Medium Dense Poorly Graded Red Gravelly Soil			6.00	DCPT	DCPT 3/3	19.0	12.7	•			
4	4.50		SP			DCPT	DCPT 3/4	25.0	16.7				
5	6.00	Dense Poorly Grade Red Gravelly Soil							DCPT	DCPT 3/5	29.0	19.3	
6	7.50						DCPT	DCPT 3/6	37.0	24.7			
7	10.50				4.50	DCPT	DCPT 3/7	50.0	33.3				

JOB NO. - GT-1764

Bore Hole - 4

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Client :- Deputy General Manager (Civil), HSCC (I) Ltd BORE LOG SHEET (as per IS 1892:1979)

Location : As per Location Map **Starting Depth** 0.0 m from EGL

Ground Water Level : Nill **Termination Depth** 10.5 m

			Soil T	уре		Sa	mple	Penetr Val		SPT 'N' PROFILE				
S.No.	Depth from EGL (m)	Description of Strata	Soil Legend	Symbolic Representation	Thickness of Strata	Туре	Sample No.	OBSERVED SPT N- VALUE	CORRECTED SPT N-VALUE	Depth v/s SPT N- value Graph				
1	0.75					DCPT	DCPT 4/1	12.0	8.0					
2	1.50	Medium Dense Poorly						4.50	DCPT	DCPT 4/2	16.0	10.7	•	
3	3.00	Graded Red Gravelly Soil				DCPT	DCPT 4/3	20.0	13.3					
4	4.50		CD			DCPT	DCPT 4/4	27.0	18.0					
5	6.00		SP	SP	51	5.				DCPT	DCPT 4/5	34.0	22.7	
6	7.50	Dense Poorly Grade Red Gravelly Soil	Grade Red	Grade Red				DCPT	DCPT 4/6	41.0	27.3			
7	9.00					6.00	DCPT	DCPT 4/7	47.0	31.3				
8	10.50					DCPT	DCPT 4/8	50.0	33.3					

JOB NO. - GT-1764

Bore Hole - 5

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Client :- Deputy General Manager (Civil), HSCC (I) Ltd BORE LOG SHEET (as per IS 1892:1979)

Location : As per Location Map **Starting Depth** 0.0 m from EGL

Ground Water Level: Nill **Termination Depth** 10.5 m

			Soil T	уре		Sa	mple	Penetr Valu		SPT 'N' PROFILE			
S.No.	Depth from EGL (m)	Description of Strata	Soil Legend	Symbolic Representation	Thickness of Strata	Туре	Sample No.	OBSERVED SPT N- VALUE	CORRECTED SPT N-VALUE	Depth v/s SPT N- value Graph			
1	0.75					DCPT	DCPT 5/1	11.0	7.3				
2	1.50	Medium Dense Poorly					4.50	DCPT	DCPT 5/2	17.0	11.3		
3	3.00	Graded Red Gravelly Soil				DCPT	DCPT 5/3	21.0	14.0				
4	4.50		CD			DCPT	DCPT 5/4	28.0	18.7	•			
5	6.00		SP	24	5			DCPT	DCPT 5/5	35.0	23.3		
6	7.50	Dense Poorly Grade Red Gravelly Soil	Grade Red	Grade Red				5.00	DCPT	DCPT 5/6	42.0	28.0	
7	9.00						6.00	DCPT	DCPT 5/7	48.0	32.0		
8	10.50					DCPT	DCPT 5/8	50.0	33.3				

JOB NO. - GT-1764

Bore Hole - 6

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Client :- Deputy General Manager (Civil), HSCC (I) Ltd BORE LOG SHEET (as per IS 1892:1979)

Location : As per Location Map **Starting Depth** 0.0 m from EGL

Ground Water Level: Nill **Termination Depth** 10.5 m

	1					1							
			Sa	Sample		ation ue	SPT 'N' PROFILE						
S.No.	Depth from EGL (m)	Description of Strata	Soil Legend	Symbolic Representation	Thickness of Strata	Туре	Sample No.	OBSERVED SPT N- VALUE	CORRECTED SPT N-VALUE	Depth v/s SPT N- value Graph			
1	0.75					DCPT	DCPT 6/1	9.0	6.0				
2	1.50						DCPT	DCPT 6/2	14.0	9.3			
3	3.00	Medium Dense Poorly Graded Red Gravelly Soil			6.00	DCPT	DCPT 6/3	19.0	12.7				
4	4.50		SP			DCPT	DCPT 6/4	22.0	14.7				
5	6.00								DCPT	DCPT 6/5	27.0	18.0	
6	7.50	Dense Poorly Grade Red Gravelly Soil		-			DCPT	DCPT 6/6	39.0	26.0			
7	10.50				4.50	DCPT	DCPT 6/7	45.0	30.0				

JOB NO. - GT-1764

Bore Hole - 7

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Client :- Deputy General Manager (Civil), HSCC (I) Ltd BORE LOG SHEET (as per IS 1892:1979)

Location : As per Location Map **Starting Depth** 0.0 m from EGL

Ground Water Level : Nill **Termination Depth** 10.5 m

			Sa	mple	Penetr Val		SPT 'N' PROFILE						
S.No.	Depth from EGL (m)	Description of Strata	Soil Legend	Symbolic Representation	Thickness of Strata	Туре	Sample No.	OBSERVED SPT N- VALUE	CORRECTED SPT N-VALUE	Depth v/s SPT N- value Graph			
1	0.75					DCPT	DCPT 7/1	9.0	6.0				
2	1.50	Medium Dense Poorly				DCPT	DCPT 7/2	13.0	8.7	•			
3	3.00	Graded Red Gravelly Soil			4.50	DCPT	DCPT 7/3	20.0	13.3				
4	4.50		SP			DCPT	DCPT 7/4	28.0	18.7	•			
5	6.00	Dense Poorly Grade Red Gravelly Soil							DCPT	DCPT 7/5	35.0	23.3	
6	7.50		Grade Red			6.00	DCPT	DCPT 7/6	43.0	28.7			
7	10.50					DCPT	DCPT 7/7	50.0	33.3				

JOB NO. - GT-1764

Bore Hole - 8

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Client :- Deputy General Manager (Civil), HSCC (I) Ltd BORE LOG SHEET (as per IS 1892:1979)

Location : As per Location Map **Starting Depth** 0.0 m from EGL

Ground Water Level : Nill **Termination Depth** 10.5 m

			Soil Type			Sa	mple	Penetration Value		SPT 'N' PROFILE				
S.No.	Depth from EGL (m)	Description of Strata	Soil Legend	Symbolic Representation	Thickness of Strata	Туре	Sample No.	OBSERVED SPT N- VALUE	CORRECTED SPT N-VALUE	Depth v/s SPT N- value Graph				
1	0.75					DCPT	DCPT 8/1	10.0	6.7					
2	1.50	Medium Dense Poorly			4.50	DCPT	DCPT 8/2	17.0	11.3	•				
3	3.00	Graded Red Gravelly Soil			1130	DCPT	DCPT 8/3	21.0	14.0					
4	4.50		5			DCPT	DCPT 8/4	28.0	18.7					
5	6.00		SP	SP	54			DCPT	DCPT 8/5	35.0	23.3			
6	7.50	Dense Poorly Grade Red Gravelly Soil		Grade Red	Grade Red	,				DCPT	DCPT 8/6	42.0	28.0	
7	9.00								6.00	DCPT	DCPT 8/7	47.0	31.3	
8	10.50					DCPT	DCPT 8/8	50.0	33.3					

JOB NO. - GT-1764

Bore Hole - 9

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Client :- Deputy General Manager (Civil), HSCC (I) Ltd BORE LOG SHEET (as per IS 1892:1979)

Location : As per Location Map **Starting Depth** 0.0 m from EGL

Ground Water Level: Nill **Termination Depth** 10.5 m

	<u> </u>					ı	1		1				
			Soil T	уре		Sa	mple	Penetr Val		SPT 'N' PROFILE			
S.No.	Depth from EGL (m)	Description of Strata	Soil Legend	Symbolic Representation	Thickness of Strata	Туре	Sample No.	OBSERVED SPT N- VALUE	CORRECTED SPT N-VALUE	Depth v/s SPT N- value Graph			
1	0.75					DCPT	DCPT 9/1	11.0	7.3				
2	1.50	Medium Dense Poorly Graded Red Gravelly Soil			3.00	DCPT	DCPT 9/2	17.0	11.3	•			
3	3.00					DCPT	DCPT 9/3	26.0	17.3				
4	4.50		SP		7.50	DCPT	DCPT 9/4	31.0	20.7				
5	6.00	Dense Poorly Grade Red Gravelly Soil				DCPT	DCPT 9/5	37.0	24.7				
6	7.50					DCPT	DCPT 9/6	45.0	30.0				
7	10.50					DCPT	DCPT 9/7	54.0	36.0				

JOB NO. - GT-1764

Bore Hole - 10

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Client :- Deputy General Manager (Civil), HSCC (I) Ltd BORE LOG SHEET (as per IS 1892:1979)

Location : As per Location Map **Starting Depth** 0.0 m from EGL

Ground Water Level: Nill **Termination Depth** 10.5 m

						1	1		1				
			Soil T	уре		Sa	mple	Penetr Valu		SPT 'N' PROFILE			
S.No.	Depth from EGL (m)	Description of Strata	Soil Legend	Symbolic Representation	Thickness of Strata	Туре	Sample No.	OBSERVED SPT N- VALUE	CORRECTED SPT N-VALUE	Depth v/s SPT N- value Graph			
1	0.75					DCPT	DCPT 10/1	11.0	7.3				
2	1.50	Medium Dense Poorly			4.50	DCPT	DCPT 10/2	17.0	11.3	•			
3	3.00	Graded Red Gravelly Soil				DCPT	DCPT 10/3	23.0	15.3				
4	4.50		SP			DCPT	DCPT 10/4	27.0	18.0				
5	6.00				6.00	DCPT	DCPT 10/5	34.0	22.7				
6	7.50	Dense Poorly Grade Red Gravelly Soil				DCPT	DCPT 10/6	39.0	26.0				
7	10.50					DCPT	DCPT 10/7	54.0	36.0				

JOB NO. - GT-1764

Bore Hole - 11

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Client :- Deputy General Manager (Civil), HSCC (I) Ltd BORE LOG SHEET (as per IS 1892:1979)

Location : As per Location Map **Starting Depth** 0.0 m from EGL

Ground Water Level: Nill **Termination Depth** 10.5 m

			Soil T	уре		Sa	mple	Penetr Val		SPT 'N' PROFILE
on's	Depth from EGL (m)	Description of Strata	Soil Legend	Symbolic Representation	Thickness of Strata	Туре	Sample No.	OBSERVED SPT N- VALUE	CORRECTED SPT N-VALUE	Depth v/s SPT N- value Graph
1	0.75				6.00	DCPT	DCPT 11/1	13.0	8.7	
2	1.50	Medium Dense Poorly Graded Red Gravelly Soil				DCPT	DCPT 11/2	18.0	12.0	
3	3.00					DCPT	DCPT 11/3	15.0	10.0	
4	4.50		SP			DCPT	DCPT 11/4	24.0	16.0	
5	6.00					DCPT	DCPT 11/5	29.0	19.3	
6	7.50				4.50	DCPT	DCPT 11/6	37.0	24.7	
7	9.00	Dense Poorly Grade Red Gravelly Soil				DCPT	DCPT 11/7	47.0	31.3	
8	10.50					DCPT	DCPT 11/8	50.0	33.3	

JOB NO. - GT-1764

Bore Hole - 12

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Client :- Deputy General Manager (Civil), HSCC (I) Ltd BORE LOG SHEET (as per IS 1892:1979)

Location : As per Location Map **Starting Depth** 0.0 m from EGL

Ground Water Level : Nill **Termination Depth** 10.5 m

	Depth from EGL (m)		Soil T	Туре		Sa	mple	Penetr Val		SPT 'N' PROFILE			
S.No.		Description of Strata	Soil Legend	Symbolic Representation	Thickness of Strata	Туре	Sample No.	OBSERVED SPT N- VALUE	CORRECTED SPT N-VALUE	Depth v/s SPT N- value Graph			
1	0.75					DCPT	DCPT 12/1	10.0	6.7				
2	1.50	Medium Dense Poorly			4.50 6.00	DCPT	DCPT 12/2	16.0	10.7				
3	3.00	Graded Red Gravelly Soil				DCPT	DCPT 12/3	24.0	16.0				
4	4.50		SP			DCPT	DCPT 12/4	28.0	18.7				
5	6.00					DCPT	DCPT 12/5	36.0	24.0				
6	7.50	Dense Poorly Grade Red Gravelly Soil				DCPT	DCPT 12/6	39.0	26.0				
7	10.50					DCPT	DCPT 12/7	50.0	33.3				

LOCATION

Job No.

Page No.

As per location Map

GT-1764

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Bore Hole No - 1

Client :- Deputy General Manager (Civil), HSCC (I) Ltd

Water table depth - Not Encountered

Sa	mple	Sieve Analysis							Soil	Soil Type Grain Size Analysis			Atterbergs Limit			Density		ENT				
S.NO	DEPTH FROM N.S.L. (m)	75 mm	20 mm	10 mm	4.75 mm	2.36 mm	425 u	75 u	SOIL CLASSIFICATION	SYMBOLIC REPRESENTATION	% GRAVEL	% SAND	% SILT & CLAY	% LIQUID LIMIT	% PLASTIC LIMIT	% PLASTIC INDEX	BULK DENSITY (gms/cc)	DRY DENSITY (g/cc)	% MOISTURE CONTENT	Angle of Internal Friction, Ø	Cohesion, C(t/m²)	Sp. GRAVITY
1	0.75	-	-	97.2	87.6	67.6	27.4	4.4	SP		12.4	83.2	4.4	NP	NP	NP	2.11	2.02	4.1	-	-	2.56
2	1.50	-	95.4	90.2	84.3	65.7	24.7	6.6	SP		15.7	77.7	6.6	NP	NP	NP	-	-	4.5	29.5	-	-
3	3.00	-	96.2	89.2	82.4	62.3	24.2	6.7	SP		17.6	75.7	6.7	NP	NP	NP	2.09	1.99	4.9	-	-	2.53
4	4.50	-	95.2	87.7	80.8	60.2	21.3	7.7	SP		19.2	73.1	7.7	NP	NP	NP	-	-	5.5	32.0	-	-
5	6.00	-	93.7	85.7	76.6	59.7	22.9	5.7	SP		23.4	70.9	5.7	NP	NP	NP	2.12	2	5.9	-	-	2.51
6	7.50	-	95.2	89.2	74.6	55.7	20.2	4.4	SP		25.4	70.2	4.4	NP	NP	NP	-	-	6.7	-	-	-
7	10.00	-	96.7	91.2	73.8	57.2	23.4	4.2	SP		26.2	69.6	4.2	NP	NP	NP	2.10	1.96	6.9	-	-	2.5

LOCATION

Job No.

Page No.

As per location Map

GT-1764

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Bore Hole No - 2

Client :- Deputy General Manager (Civil), HSCC (I) Ltd

Water table depth - Not Encountered

Sa	mple	Sieve Analysis							Soil	Soil Type Grain Size Analysis			Atterbergs Limit			Density		EN				
S.NO	DEPTH FROM N.S.L. (m)	75 mm	20 mm	10 mm	4.75 mm	2.36 mm	425 u	75 u	SOIL CLASSIFICATION	SYMBOLIC REPRESENTATION	% GRAVEL	% SAND	% SILT & CLAY	% LIQUID LIMIT	% PLASTIC LIMIT	% PLASTIC INDEX	BULK DENSITY (gms/cc)	DRY DENSITY (g/cc)	% MOISTURE CONTENT	Angle of Internal Friction, Ø	Cohesion, C(t/m²)	Sp. GRAVITY
1	0.75	-	-	94.9	84.8	62.7	25.9	4.7	SP		15.2	80.1	4.7	NP	NP	NP	2.05	1.96	4.1	-	-	2.51
2	1.50	-	-	92.9	82.7	66.7	27.4	5.7	SP		17.3	77.0	5.7	NP	NP	NP	-	-	4.7	-	-	-
3	3.00	-	97.2	93.4	86.3	60.3	24.9	7.3	SP		13.7	79.0	7.3	NP	NP	NP	2.01	1.91	4.9	31.50	-	2.55
4	4.50	-	95.4	89.2	81.6	65.2	29.2	6.7	SP		18.4	74.9	6.7	NP	NP	NP	-	-	5.1	-	-	-
5	6.00	-	96.6	90.3	84.5	59.9	24.3	7.7	SP		15.5	76.8	7.7	NP	NP	NP	2.03	1.92	5.7	33.90	-	2.53
6	7.50	-	94.2	85.7	79.2	57.2	26.4	8.5	SP		20.2	71.3	8.5	NP	NP	NP	-	-	5.9	-	-	-
7	10.00	-	96.7	91.7	81.1	59.2	28.7	8.3	SP		18.9	72.8	8.3	NP	NP	NP	2.03	1.91	6.2	-	-	2.53

LOCATION

Job No.

Page No.

As per location Map

GT-1764

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Bore Hole No - 3

Client: - Deputy General Manager (Civil), HSCC (I) Ltd

Sa	mple			Siev	e Ana	lysis			Soil	Туре	Grain	Size Ar	nalysis	Atte	rbergs	Limit	Der	sity	ENT			
S.NO	DEPTH FROM N.S.L. (m)	75 mm	20 mm	10 mm	4.75 mm	2.36 mm	425 u	75 u	SOIL CLASSIFICATION	SYMBOLIC REPRESENTATION	% GRAVEL	% SAND	% SILT & CLAY	% LIQUID LIMIT	% PLASTIC LIMIT	% PLASTIC INDEX	BULK DENSITY (gms/cc)	DRY DENSITY (g/cc)	% MOISTURE CONTENT	Angle of Internal Friction, Ø	Cohesion, C(t/m²)	Sp. GRAVITY
1	0.75	-	-	94.7	84.7	63.7	26.7	5.2	SP		15.3	79.5	5.2	NP	NP	NP	2.07	1.97	4.6	-	-	2.57
2	1.50	-	-	97.4	89.8	65.8	28.9	2.6	SP		10.2	87.2	2.6	NP	NP	NP	-	-	5.0	30.1	-	-
3	3.00	-	98.2	92.4	86.3	61.6	27.2	6.7	SP		13.7	79.6	6.7	NP	NP	NP	2.05	1.94	5.5	-	-	2.55
4	4.50	-	97.6	94.6	82.3	58.7	25.2	4.9	SP		17.7	77.4	4.9	NP	NP	NP	-	-	5.9	32.5	-	-
5	6.00	-	94.7	90.2	80.8	62.4	26.7	6.4	SP		19.2	74.4	6.4	NP	NP	NP	2.08	1.95	6.2	-	-	2.53
6	7.50	-	96.7	89.7	78.8	57.7	22.7	5.5	SP		21.2	73.3	5.5	NP	NP	NP	-	-	6.7	-	-	-
7	10.00	-	96.1	90.1	78.5	59.7	24.6	6.8	SP		21.5	71.7	6.8	NP	NP	NP	2.10	1.96	7.0	-	-	2.53

LOCATION

Job No.

Page No.

As per location Map

GT-1764

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Bore Hole No - 4

Client :- Deputy General Manager (Civil), HSCC (I) Ltd

Sa	mple			Siev	e Ana	lysis			Soil	Туре	Grain	Size Ar	nalysis	Atte	rbergs	Limit	Den	sity	ENT			
S.NO	DEPTH FROM N.S.L. (m)	75 mm	20 mm	10 mm	4.75 mm	2.36 mm	425 u	75 u	SOIL CLASSIFICATION	SYMBOLIC REPRESENTATION	% GRAVEL	% SAND	% SILT & CLAY	% LIQUID LIMIT	% PLASTIC LIMIT	% PLASTIC INDEX	BULK DENSITY (gms/cc)	DRY DENSITY (g/cc)	% MOISTURE CONTENT	Angle of Internal Friction, Ø	Cohesion, C(t/m²)	Sp. GRAVITY
1	0.75	-	97.4	85.1	77.6	50.2	23.4	4.2	SP		22.4	73.4	4.2	NP	NP	NP	2.15	2.05	4.4	-	-	2.53
2	1.50	-	95.2	82.7	73.3	47.4	21.6	6.7	SP		26.7	66.6	6.7	NP	NP	NP	-	-	4.7	30.5	-	-
3	3.00	-	91.4	84.2	70.4	45.7	19.2	7.7	SP		29.6	62.7	7.7	NP	NP	NP	-	-	5.0	-	-	-
4	4.50	-	90.2	80.2	68.3	49.7	22.4	4.2	SP		31.7	64.1	4.2	NP	NP	NP	2.17	2.05	5.5	-	-	2.51
5	6.00	-	95.2	83.4	71.1	44.7	20.6	3.7	SP		28.9	67.4	3.7	NP	NP	NP	-	-	5.7	34.6	-	-
6	7.50	-	89.2	79.4	67.6	46.7	23.7	3.6	SP		32.4	64.0	3.7	NP	NP	NP	2.20	2.07	6.0	-	-	2.49
7	9.00	-	90.2	78.9	67.3	44.2	21.7	4.0	SP		32.7	63.3	4.0	NP	NP	NP	-	-	6.1	-	-	-
8	10.50	-	92.4	80.2	68.3	47.2	25.2	3.0	SP		31.7	65.3	3.0	NP	NP	NP	2.23	2.09	6.4	-	-	2.49

LOCATION

Job No.

Page No.

As per location Map

GT-1764

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Bore Hole No - 5

Client :- Deputy General Manager (Civil), HSCC (I) Ltd

Sa	mple			Siev	e Ana	lysis			Soil	Туре	Grain	Size Ar	nalysis	Atte	rbergs	Limit	Den	sity	ENT			
S.NO	DEPTH FROM N.S.L. (m)	75 mm	20 mm	10 mm	4.75 mm	2.36 mm	425 u	75 u	SOIL CLASSIFICATION	SYMBOLIC REPRESENTATION	% GRAVEL	% SAND	% SILT & CLAY	% LIQUID LIMIT	% PLASTIC LIMIT	% PLASTIC INDEX	BULK DENSITY (gms/cc)	DRY DENSITY (g/cc)	% MOISTURE CONTENT	Angle of Internal Friction, Ø	Cohesion, C(t/m²)	Sp. GRAVITY
1	0.75	-	97.2	92.4	87.6	69.2	29.7	6.6	SP		12.4	81.0	6.6	NP	NP	NP	2.13	2.05	3.9	-	-	2.56
2	1.50	-	95.2	90.2	84.6	65.4	25.5	7.7	SP		15.4	76.9	7.7	NP	NP	NP	-	-	4.5	30.20	-	-
3	3.00	-	89.7	75.7	61.1	49.7	21.9	5.5	SP		38.9	55.6	5.5	NP	NP	NP	2.17	2.06	4.9	-	-	2.5
4	4.50	-	90.2	73.4	56.6	42.4	17.2	3.9	SP		43.4	52.7	3.9	NP	NP	NP	-	-	5.1	33.12	-	-
5	6.00	-	92.4	79.3	64.3	45.2	19.5	3.2	SP		35.7	61.1	3.2	NP	NP	NP	2.20	2.08	5.7	-	-	2.48
6	7.50	-	88.9	75.2	60.6	40.9	15.7	4.4	SP		39.4	56.2	4.4	NP	NP	NP	-	-	6.1	-	-	-
7	9.00	-	93.4	77.7	57.6	43.7	17.2	4.7	SP		42.4	52.9	4.7	NP	NP	NP	2.22	2.08	6.7	-	-	2.48
8	10.50	-	90.2	74.7	55.3	41.3	15.4	4.0	SP		44.7	51.3	4.0	NP	NP	NP	-	-	7.0	-	-	-

LOCATION

Job No.

Page No.

As per location Map

GT-1764

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Bore Hole No - 6

Client :- Deputy General Manager (Civil), HSCC (I) Ltd

Sa	mple			Siev	e Ana	lysis			Soil	Туре	Grain	Size Ar	nalysis	Atte	rbergs	Limit	Den	sity	ENT			
S.NO	DEPTH FROM N.S.L. (m)	75 mm	20 mm	10 mm	4.75 mm	2.36 mm	425 u	75 u	SOIL CLASSIFICATION	SYMBOLIC REPRESENTATION	% GRAVEL	% SAND	% SILT & CLAY	% LIQUID LIMIT	% PLASTIC LIMIT	% PLASTIC INDEX	BULK DENSITY (gms/cc)	DRY DENSITY (g/cc)	% MOISTURE CONTENT	Angle of Internal Friction, Ø	Cohesion, C(t/m²)	Sp. GRAVITY
1	0.75	-	94.9	92.2	86.6	60.2	22.4	6.6	SP		13.4	80.0	6.6	NP	NP	NP	2.09	2.02	3.4	-	-	2.57
2	1.50	-	99.2	94.2	89.8	62.4	24.4	8.4	SP		10.2	81.4	8.4	NP	NP	NP	-	-	3.7	-	-	-
3	3.00	-	96.2	92.4	87.6	59.2	20.2	7.3	SP		12.4	80.3	7.3	NP	NP	NP	2.12	2.03	4.0	31.50	-	2.54
4	4.50	-	-	98.2	86.6	66.7	24.7	3.4	SP		14.2	82.4	3.4	NP	NP	NP	-	-	4.7	-	-	-
5	6.00	-	97.2	93.4	82.8	61.7	21.7	6.0	SP		17.2	76.8	6.0	NP	NP	NP	2.15	2.04	5.0	32.80	-	2.52
6	7.50	-	94.5	87.2	79.6	57.9	20.2	2.9	SP		20.4	76.7	2.9	NP	NP	NP	-	-	5.5	-	-	-
7	9.00	-	96.2	89.2	75.3	56.8	19.7	3.4	SP		24.7	71.9	3.4	NP	NP	NP	2.16	2.03	6.0	-	-	2.50

LOCATION

Job No.

Page No.

As per location Map

GT-1764

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Bore Hole No - 7

Client :- Deputy General Manager (Civil), HSCC (I) Ltd

Sa	mple			Siev	e Ana	lysis			Soil	Туре	Grain	Size Ar	nalysis	Atte	rbergs	Limit	Den	sity	ENT			
S.NO	DEPTH FROM N.S.L. (m)	75 mm	20 mm	10 mm	4.75 mm	2.36 mm	425 u	75 u	SOIL CLASSIFICATION	SYMBOLIC REPRESENTATION	% GRAVEL	% SAND	% SILT & CLAY	% LIQUID LIMIT	% PLASTIC LIMIT	% PLASTIC INDEX	BULK DENSITY (gms/cc)	DRY DENSITY (g/cc)	% MOISTURE CONTENT	Angle of Internal Friction, Ø	Cohesion, C(t/m²)	Sp. GRAVITY
1	0.75	-	95.2	89.2	84.3	66.2	28.4	6.7	SP		15.7	77.6	6.7	NP	NP	NP	2.07	1.99	3.7	-	-	2.56
2	1.50	-	-	93.7	88.8	68.2	25.2	4.4	SP		11.2	84.4	4.4	NP	NP	NP	-	-	4.2	29.83	-	-
3	3.00	-	97.2	90.2	82.8	62.7	23.7	7.5	SP		17.2	75.3	7.5	NP	NP	NP	2.10	2.00	4.8	-	-	2.53
4	4.50	-	95.7	91.2	80.5	60.4	25.3	5.9	SP		19.5	74.6	5.9	NP	NP	NP	-	-	5.4	32.43	-	-
5	6.00	-	96.3	89.7	78.8	57.9	20.7	6.8	SP		21.2	72.0	6.8	NP	NP	NP	2.12	2.00	5.9	-	-	2.51
6	7.50	-	96.7	90.5	78.5	59.3	22.5	6.9	SP		21.5	71.6	6.9	NP	NP	NP	-	-	6.4	-	-	-
7	10.00	-	94.9	88.7	79.3	61.7	26.3	7.2	SP		20.7	72.1	7.2	NP	NP	NP	2.09	1.95	6.7	-	-	2.51

LOCATION

Job No.

Page No.

As per location Map

GT-1764

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Bore Hole No - 8

Client :- Deputy General Manager (Civil), HSCC (I) Ltd

Sa	mple			Siev	e Ana	lysis			Soil	Туре	Grain	Size Ar	nalysis	Atte	rbergs	Limit	Den	sity	EN			
S.NO	DEPTH FROM N.S.L. (m)	75 mm	20 mm	10 mm	4.75 mm	2.36 mm	425 u	75 u	SOIL CLASSIFICATION	SYMBOLIC REPRESENTATION	% GRAVEL	% SAND	% SILT & CLAY	м гібпір гіміт	% PLASTIC LIMIT	% PLASTIC INDEX	BULK DENSITY (gms/cc)	DRY DENSITY (g/cc)	% MOISTURE CONTENT	Angle of Internal Friction, Ø	Cohesion, C(t/m²)	Sp. GRAVITY
1	0.75	-	94.9	90.2	64.7	64.7	23.4	7.7	SP		20.2	72.1	7.7	NP	NP	NP	2.15	2.07	3.9	-	-	2.53
2	1.50	-	95.5	88.2	60.4	60.4	21.7	6.9	SP		25.4	67.7	6.9	NP	NP	NP	-	-	4.0	-	-	-
3	3.00	-	88.9	75.9	50.2	50.2	18.7	4.8	SP		36.4	58.8	4.8	NP	NP	NP	-	-	4.7	31.40	-	-
4	4.50	-	84.7	72.4	48.2	48.2	16.9	4.7	SP		40.2	55.1	4.7	NP	NP	NP	2.2	2.12	4.9	32.77	-	2.48
5	6.00	-	87.7	70.7	45.3	45.3	15.6	3.9	SP		44.2	51.9	3.9	NP	NP	NP	-	-	5.7	-	- 	-
6	7.50	-	92.4	72.9	47.7	47.7	17.7	3.3	SP		42.4	54.3	3.3	NP	NP	NP	-	-	5.5	-	-	-
7	9.00	-	90.2	70.8	44.6	44.6	15.9	3.7	SP		44.7	51.6	3.7	NP	NP	NP	2.25	2.12	6.0	-	-	2.45
8	10.50	-	89.9	68.7	46.7	46.7	17.2	3.0	SP		42.5	57.2	3.0	NP	NP	NP	-	-	6.5	-	-	-

LOCATION

Job No.

GT-1764

Page No.

As per location Map

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Bore Hole No - 9

Client :- Deputy General Manager (Civil), HSCC (I) Ltd

Sa	mple			Siev	e Ana	lysis			Soil	Туре	Grain	Size Ar	nalysis	Atte	rbergs	Limit	Den	sity	ENT			
S.NO	DEPTH FROM N.S.L. (m)	75 mm	20 mm	10 mm	4.75 mm	2.36 mm	425 u	75 u	SOIL CLASSIFICATION	SYMBOLIC REPRESENTATION	% GRAVEL	% SAND	% SILT & CLAY	% LIQUID LIMIT	% PLASTIC LIMIT	% PLASTIC INDEX	BULK DENSITY (gms/cc)	DRY DENSITY (g/cc)	% MOISTURE CONTENT	Angle of Internal Friction, Ø	Cohesion, C(t/m²)	Sp. GRAVITY
1	0.75	-	93.1	80.0	71.8	55.7	20.2	4.4	SP		28.2	67.4	4.4	NP	NP	NP	2.12	2.02	4.7	-	-	2.56
2	1.50	-	95.7	87.7	76.6	59.2	23.4	6.0	SP		23.4	70.6	6.0	NP	NP	NP	-	-	4.9	30.16	-	-
3	3.00	-	93.2	85.7	83.3	62.4	26.7	5.5	SP		16.7	77.8	5.5	NP	NP	NP	2.15	2.04	5.1	-	-	2.54
4	4.50	-	96.7	89.7	80.6	60.7	25.9	4.7	SP		19.4	75.9	4.7	NP	NP	NP	-	-	5.7	33.48	-	-
5	6.00	-	97.7	86.7	78.4	57.6	21.7	4.2	SP		21.6	74.2	4.2	NP	NP	NP	2.09	1.96	6.1	-	-	2.52
6	7.50	-	94.7	87.2	76.6	56.7	21.5	5.7	SP		23.4	70.9	5.7	NP	NP	NP	-	-	6.4	-	-	-
7	10.00	-	96.5	85.9	76.3	54.7	29.7	6.1	SP		23.7	70.2	6.1	NP	NP	NP	2.11	1.97	6.9	-	-	2.52

LOCATION

Job No.

Page No.

As per location Map

GT-1764

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Bore Hole No - 10

Client :- Deputy General Manager (Civil), HSCC (I) Ltd

Sa	mple			Siev	e Ana	lysis			Soil	Туре	Grain	Size Ar	nalysis	Atte	rbergs	Limit	Den	sity	ENT			
S.NO	DEPTH FROM N.S.L. (m)	75 mm	20 mm	10 mm	4.75 mm	2.36 mm	425 u	75 u	SOIL CLASSIFICATION	SYMBOLIC REPRESENTATION	% GRAVEL	% SAND	% SILT & CLAY	иміл діпол %	% PLASTIC LIMIT	% PLASTIC INDEX	BULK DENSITY (gms/cc)	DRY DENSITY (g/cc)	% MOISTURE CONTENT	Angle of Internal Friction, Ø	Cohesion, C(t/m²)	Sp. GRAVITY
1	0.75	-	94.2	90.2	86.3	66.7	27.4	6.7	SP		13.7	79.6	6.7	NP	NP	NP	2.07	1.99	4.0	-	-	2.56
2	1.50	-	97.2	89.2	83.8	64.2	25.7	5.9	SP		16.2	77.9	5.9	NP	NP	NP	-	-	4.4	-	-	-
3	3.00	-	96.2	92.4	87.6	67.2	29.2	7.2	SP		12.4	80.4	7.2	NP	NP	NP	2.04	1.94	4.7	31.3	-	2.56
4	4.50	-	94.2	88.7	81.8	64.2	24.9	7.5	SP		18.2	74.3	7.5	NP	NP	NP	-	-	5.0	-	-	-
5	6.00	-	95.2	89.2	79.8	60.2	26.2	7.5	SP		20.2	72.3	7.5	NP	NP	NP	2.09	1.97	5.7	33.12	-	2.54
6	7.50	-	97.2	90.9	80.3	59.2	24.8	8.8	SP		19.7	71.5	8.8	NP	NP	NP	-	-	6.0	-	-	-
7	10.00	-	93.7	87.2	78.8	62.4	22.9	6.9	SP		21.2	71.9	6.9	NP	NP	NP	2.06	1.93	6.7	-	-	2.52

LOCATION

Job No.

Page No.

As per location Map

GT-1764

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Bore Hole No - 11

Client :- Deputy General Manager (Civil), HSCC (I) Ltd

Sa	mple			Siev	e Ana	lysis			Soil	Туре	Grain	Size Ar	nalysis	Atte	rbergs	Limit	Den	sity	ENT			
S.NO	DEPTH FROM N.S.L. (m)	75 mm	20 mm	10 mm	4.75 mm	2.36 mm	425 u	75 u	SOIL CLASSIFICATION	SYMBOLIC REPRESENTATION	% GRAVEL	% SAND	% SILT & CLAY	% LIQUID LIMIT	% PLASTIC LIMIT	% PLASTIC INDEX	BULK DENSITY (gms/cc)	DRY DENSITY (g/cc)	% MOISTURE CONTENT	Angle of Internal Friction, Ø	Cohesion, C(t/m ²)	Sp. GRAVITY
1	0.75	-	84.9	75.2	60.8	34.2	15.2	4.2	SP		39.2	56.6	4.2	NP	NP	NP	2.22	2.07	4.7	-	-	2.53
2	1.50	-	87.2	79.4	57.6	30.4	12.9	3.7	SP		42.4	53.9	3.7	NP	NP	NP	-	-	5.0	30.72	-	-
3	3.00	-	92.4	89.7	77.6	56.7	20.2	5.7	SP		22.4	71.9	5.7	NP	NP	NP	2.12	2.01	5.2	-	-	2.56
4	4.50	-	95.4	90.4	82.1	59.8	22.4	4.2	SP		17.9	77.9	4.2	NP	NP	NP	-	-	6.0	32.50	-	-
5	6.00	-	94.5	88.7	79.8	57.2	24.6	6.6	SP		20.2	73.2	6.6	NP	NP	NP	2.15	2.02	6.4	-	-	2.54
6	7.50	-	92.9	89.7	75.5	55.7	21.9	6.0	SP		24.5	69.5	6.0	NP	NP	NP	-	-	6.7	-	-	-
7	9.00	-	97.2	91.4	70.8	55.5	23.5	5.5	SP		29.2	65.3	5.5	NP	NP	NP	2.2	2.02	6.9	-	-	2.51
8	10.50	-	91.9	85.4	68.6	52.4	12.8	4.7	SP		31.4	63.9	4.7	NP	NP	NP	-	-	7.2	-	-	-

LOCATION

Job No.

Page No.

As per location Map

GT-1764

PROJECT :-Construction of AIIMS at Guntur, Andhra Pradesh

Bore Hole No - 12

Client :- Deputy General Manager (Civil), HSCC (I) Ltd

Sa	mple			Siev	e Ana	lysis			Soil	Туре	Grain	Size Ar	nalysis	Atte	rbergs	Limit	Den	sity	ENT			
S.NO	DEPTH FROM N.S.L. (m)	75 mm	20 mm	10 mm	4.75 mm	2.36 mm	425 u	75 u	SOIL CLASSIFICATION	SYMBOLIC REPRESENTATION	% GRAVEL	% SAND	% SILT & CLAY	% LIQUID LIMIT	% PLASTIC LIMIT	% PLASTIC INDEX	BULK DENSITY (gms/cc)	DRY DENSITY (g/cc)	% MOISTURE CONTENT	Angle of Internal Friction, Ø	Cohesion, C(t/m²)	Sp. GRAVITY
1	0.75	-	96.4	91.4	84.3	67.4	24.7	4.4	SP		15.7	79.9	4.4	NP	NP	NP	2.13	2.04	4.4	-	-	2.55
2	1.50	-	97.4	89.7	82.6	65.4	22.5	5.7	SP		17.4	76.9	5.7	NP	NP	NP	-	-	4.7	29.61	-	-
3	3.00	-	98.7	93.4	89.3	69.2	27.8	6.7	SP		10.7	82.6	6.7	NP	NP	NP	2.10	1.99	5.1	-	-	2.53
4	4.50	-	-	94.0	87.5	66.7	25.9	4.2	SP		12.5	83.3	4.2	NP	NP	NP	-	-	5.5	32.77	-	-
5	6.00	-	95.4	90.2	83.1	82.1	21.6	6.1	SP		16.9	77.0	6.1	NP	NP	NP	2.12	2.00	5.9	-	-	2.51
6	7.50	-	94.7	85.7	79.8	60.7	20.5	3.4	SP		20.2	76.4	3.4	NP	NP	NP	-	-	6.1	-	-	-
7	9.00	-	97.4	87.4	75.6	57.4	19.7	3.0	SP		24.4	72.6	3.0	NP	NP	NP	2.15	2.01	6.6	-	-	2.50
8	10.50	-	94.7	84.9	73.6	55.7	17.9	5.4	SP		26.4	68.2	5.4	NP	NP	NP	-	-	6.4	-	-	-

.6	Te.	COTCNÉ	ENCINEED	ING CONSULTANTS	Job No	Page No.
ENERGENE	CONSULTANTS	SOIGNE	ENGINEEK	ING CONSULTANTS	GT-1764	
PROJECT	:- Constructi	on of AIIMS at	Guntur, Andhra	a Pradesh	DCPT NO.	1
Client :- [Deputy Gener	al Manager (Ci	vil), HSCC (I) Lt	td		
Location	•	As per locatio	n map		Starting Depth	E.G.L.
				Te	rmination Depth	8.10 m
		Penetra	tion Value	DCPT 'N' PRO	OFILE	
S.No.	Depth from EGL (m)	OBSERVED SPT N-VALUE	CORRECTED SPT N- VALUE	DCPT v/s SPT N-v	alue Graph	Remarks
1	0.00	6.0	4.0			
2	0.30	11.0	7.3			
3	0.60	14.0	9.3			
4	0.90	13.0	8.7		OBSERVED -	Corrected N-Value
5	1.20	18.0	12.0			
6	1.50	19.0	12.7			
7	1.80	21.0	14.0			
8	2.10	26.0	17.3			
9	2.40	30.0	20.0			
10	2.70	36.0	24.0			
11	3.00	45.0	30.0			
12	3.30	49.0	32.7			
13	3.60	53.0	35.3			
14	3.90	61.0	40.7			
15	4.20	68.0	45.3		9	
16	4.50	77.0	51.3		-	
17	4.80	79.0	52.7	-	9	
18 19	5.10 5.40	86.0 91.0	57.3 60.7	-	9	
20	5.40	96.0	64.0	-		
20	6.00	96.0	66.0	1	<u> </u>	
22	6.30	105.0	70.0	-		
23	6.60	111.0	74.0	-	\	
23	6.90	111.0	79.3	-		2
25	7.20	125.0	83.3	-		19
26	7.50	132.0	88.0			1
27	7.80	136.0	90.7	-		1
28	8.10	130.0	90.7 R			

are medicale	CONSULTANTS			ING CONSULTANTS	Job No GT-1764	Page No.
		ion of AIIMS at ral Manager (Civ			DCPT NO.	2
		rai Manager (Civ	/II), ПЗСС (1) L	ια 		
Location :		As per location	n map		Starting Depth	E.G.L.
				Ter	mination Depth	7.80 m
		Penetra	tion Value	DCPT 'N' PRO	OFILE	
S.No.	Depth from EGL (m)	OBSERVED SPT N- VALUE	CORRECTED SPT N- VALUE	DCPT v/s SPT N-va	alue Graph	Remarks
1	0.00	8.0	5.3			
2	0.30	10.0	6.7			
3	0.60	16.0	10.7			
4	0.90	19.0	12.7		OBSERVED -	Corrected N-Value
5	1.20	19.0	12.7			
6	1.50	22.0	14.7			
7	1.80	24.0	16.0			
8	2.10	27.0	18.0			
9	2.40	33.0	22.0			
10	2.70	34.0	22.7			
11	3.00	42.0	28.0			
12	3.30	46.0	30.7			
13	3.60	50.0	33.3		•	
14	3.90	66.0	44.0			
15	4.20	69.0	46.0	1 1 1 1 1 1		
16	4.50	73.0	48.7			
17	4.80	76.0	50.7		a	
18	5.10	83.0	55.3			
19	5.40	89.0	59.3			
20	5.70	93.0	62.0			
21	6.00	95.0	63.3			
22	6.30	101.0	67.3			0
23	6.60	108.0	72.0	-		Q
24	6.90	117.0	78.0			a
25	7.20	124.0	82.7	-		8
26 27	7.50 7.80	137.0 R	91.3 R			

	A.	22-21-4			Job No	Page No.
STEERING STATE	CONSULTANTS	SOIGNE	ENGINEER	RING CONSULTANTS	GT-1764	
PROJECT	:- Constructi	on of AIIMS at	Guntur, Andhr	a Pradesh	DCPT NO.	3
Client :- D	eputy Gener	al Manager (Civ	vil), HSCC (I) L	td		
Location :		As per location	n map		Starting Depth	E.G.L.
				Tei	rmination Depth	8.10 m
		Penetra	tion Value	DCPT 'N' PRO	OFILE	
S.No.	Depth from EGL (m)	OBSERVED SPT N-VALUE	CORRECTED SPT N- VALUE	DCPT v/s SPT N-v	alue Graph	Remarks
1	0.00	7.0	4.7			
2	0.30	10.0	6.7			
3	0.60	13.0	8.7			
4	0.90	15.0	10.0			
5	1.20	16.0	10.7		OBSERVED -	Corrected N-Value
6	1.50	20.0	13.3			
7	1.80	22.0	14.7			
8	2.10	27.0	18.0			
9	2.40	32.0	21.3	9		
10	2.70	38.0	25.3			
11	3.00	43.0	28.7			
12	3.30	48.0	32.0			
13	3.60	54.0	36.0			
14	3.90	63.0	42.0			
15	4.20	69.0	46.0			
16	4.50	79.0	52.7	4		
17	4.80	83.0	55.3	_		
18	5.10	87.0	58.0			
19	5.40	96.0	64.0	-	7	
20 21	5.70	99.0	66.0 68.0		9	
22	6.00 6.30	102.0 108.0	72.0	-	9	
23	6.60	116.0	72.0	-	19	
23	6.90	126.0	84.0	-	1	
25	7.20	132.0	88.0	-	8	
26	7.50	132.0	92.7		1	
27	7.80	146.0	97.3	-	-	
28	7.90	R R	97.5 R	-		>

	E.	SOTONÉ	ENCINEER	ING CONSULTANTS	Job No	Page No.
ENGINE STATE	CONSULTANTS	SOIGNE	ENGINEER	ING CONSULTANTS	GT-1764	
PROJECT :- Construction of AIIMS at Guntur, Andhra Prad				a Pradesh	DCPT NO.	4
lient :- D	Deputy Gener	ral Manager (Civ	vil), HSCC (I) Li	td		
ocation :	<u> </u>	As per location	n map		Starting Depth	E.G.L.
				Т	ermination Depth	8.0 m
		Penetra	tion Value	DCPT 'N' PI	ROFILE	
S.No.	Depth from EGL (m)	OBSERVED SPT N- VALUE	CORRECTED SPT N- VALUE	DCPT v/s SPT N-	value Graph	Remarks
1	0.00	8.0	5.3	R		_
2	0.30	12.0	8.0			
3	0.60	15.0	10.0			
4	0.90	13.0	8.7		OBSERVED -	- Corrected N-Value
5	1.20	18.0	12.0		OBSERVED	- Corrected IN-Value
6	1.50	20.0	13.3			
7	1.80	22.0	14.7			
8	2.10	28.0	18.7			
9	2.40	32.0	21.3			
10	2.70	39.0	26.0			
11	3.00	44.0	29.3			
12	3.30	48.0	32.0			
13	3.60	56.0	37.3	1 7		
14	3.90	60.0	40.0			
15	4.20	65.0	43.3	-		
16 17	4.50 4.80	75.0 79.0	50.0 52.7	-		
18	5.10	90.0	60.0	-		
19	5.40	91.0	60.7		I	
20	5.70	95.0	63.3			
21	6.00	100.0	66.7		7	
22	6.30	104.0	69.3	-		
23	6.60	112.0	74.7	-		
24	6.90	117.0	78.0			9
25	7.20	123.0	82.0	1		19
26	7.50	130.0	86.7			9
27	7.80	135.0	90.0	1		1 1
				1	 	

8.00

R

R

28

	A.	SOTONÉ	ENGINEER	ING CONSULTANTS	Job No	Page No.
SUIGNE ENGINE		ENGTHEEK	TING CONSULTANTS	GT-1764		
PROJECT	:- Constructi	on of AIIMS at	Guntur, Andhra	a Pradesh	DCPT NO.	5
Client :- D	Deputy Gener	al Manager (Ci	vil), HSCC (I) L	td		
ocation :	:	As per location	n map		Starting Depth	E.G.L.
				Ter	mination Depth	7.60 m
		Penetra	tion Value	DCPT 'N' PRO	FILE	
S.No.	Depth from EGL (m)	OBSERVED SPT N-VALUE	CORRECTED SPT N- VALUE	DCPT v/s SPT N-va	alue Graph	Remarks
1	0.00	5.0	3.3			
2	0.30	9.0	6.0			
3	0.60	11.0	7.3			
4	0.90	12.0	8.0		OBSERVED -	Corrected N-Value
5	1.20	16.0	10.7			
6	1.50	18.0	12.0			
7	1.80	20.0	13.3			
8	2.10	25.0	16.7			
9	2.40	30.0	20.0			
10	2.70	36.0	24.0			
11	3.00	40.0	26.7			
12	3.30	46.0	30.7	<u> </u>		
13	3.60	49.0	32.7			
14	3.90	53.0	35.3			
15	4.20	59.0	39.3			
16	4.50	64.0	42.7			
17	4.80	68.0	45.3		A H	
18	5.10	75.0	50.0		Na III	
19	5.40	82.0	54.7		a l	
20	5.70	89.0	59.3			
21	6.00	96.0	64.0	_		
22	6.30	99.0	66.0			A
23	6.60	102.0	68.0			N N
24	6.90	107.0	71.3			
25	7.20	112.0	74.7	_		•
26	7.50	121.0	80.7			
27	7.60	R	R			

		SOIGNE ion of AIIMS at	ENGINEER	RING CONSULTANT	S -	
Client :- De		ion of AIIMS at			GT-1764	
	eputy Gene		Guntur, Andhra	a Pradesh	DCPT NO.	6
ocation :		ral Manager (Civ	vil), HSCC (I) L	td		
		As per location	n map		Starting Depth	E.G.L.
					Termination Depth	7.90 m
		Penetra	tion Value	DCPT 'N'	PROFILE	
S.No.	Depth from EGL (m)	OBSERVED SPT N-VALUE	CORRECTED SPT N-VALUE	DCPT v/s SPT I	I-value Graph	Remarks
1	0.00	6.0	4.0	1		
2	0.30	8.0	5.3			
3	0.60	14.0	9.3			
4	0.90	17.0	11.3		OBSERVED -	Corrected N-Value
5	1.20	19.0	12.7		ODSERVED	Corrected IV-Value
6	1.50	20.0	13.3			
7	1.80	23.0	15.3	12		
8	2.10	26.0	17.3			
9	2.40	29.0	19.3			
10	2.70	34.0	22.7			
11	3.00	38.0	25.3			
12	3.30	42.0	28.0	9		
13	3.60	49.0	32.7	1 7		
14	3.90	53.0	35.3			
15	4.20	59.0	39.3		9	
16	4.50	67.0	44.7	-	19	
17	4.80	72.0	48.0	-	7	
18 19	5.10	74.0	49.3		9	
20	5.40 5.70	81.0 86.0	54.0 57.3	-		
21	6.00	94.0	62.7	-	2	
22	6.30	98.0	65.3	-	7 7	
23	6.60	103.0	68.7	-	4	
24	6.90	103.0	72.0		1	
25	7.20	116.0	77.3	-		9
26	7.50	124.0	82.7			8
27	7.80	135.0	90.0	1		N N

28

7.90

R

R

S		SOIGNÉ	ENGINEER	ING CONSULTANTS	Job No	Page No.
A STREET, STRE	CONSULTANTS				GT-1764	
PROJECT	:- Constructi	ion of AIIMS at	Guntur, Andhra	a Pradesh	DCPT NO.	7
Client :- [Deputy Gener	ral Manager (Ci	vil), HSCC (I) Lt	td		
Location	:	As per location	n map		Starting Depth	E.G.L.
				Tei	rmination Depth	7.70 m
		Penetra	tion Value	DCPT 'N' PRO	OFILE	
S.No.	Depth from EGL (m)	OBSERVED SPT N-VALUE	CORRECTED SPT N- VALUE	DCPT v/s SPT N-v	alue Graph	Remarks
1	0.00	7.0	4.7			
2	0.30	11.0	7.3			
3	0.60	12.0	8.0			
4	0.90	16.0	10.7		OBSERVED -	Corrected N-Value
5	1.20	18.0	12.0		OBSERVED	Corrected IN-Value
6	1.50	21.0	14.0			
7	1.80	25.0	16.7			
8	2.10	31.0	20.7			
9	2.40	35.0	23.3			
10	2.70	36.0	24.0			
11	3.00	43.0	28.7			
12	3.30	49.0	32.7			
13	3.60	53.0	35.3			
14	3.90	59.0	39.3			
15	4.20	64.0	42.7		1	
16	4.50	66.0	44.0		1	
17	4.80	67.0	44.7	1 1 1 1 1 1		
18	5.10	71.0	47.3			
19	5.40	74.0	49.3		0	
20	5.70	82.0	54.7			
21	6.00	87.0	58.0			
22	6.30	94.0	62.7			
23	6.60	101.0	67.3			a
24	6.90	113.0	75.3			
25	7.20	129.0	86.0			
26	7.50	137.0	91.3			
27	7.70	R	R			

enconcerne.	CONSULTANTS	SOIGNÉ	ENGINEER	ING CONSULTANTS	Job No GT-1764	Page No.
PROJECT	:- Constructi	on of AIIMS at	Guntur, Andhra	a Pradesh	DCPT NO.	8
Client :- D	Deputy Gener	al Manager (Civ	vil), HSCC (I) L	td		
Location	:	As per location	n map		Starting Depth	E.G.L.
				Ter	mination Depth	7.30 m
		Penetra	tion Value	DCPT 'N' PRO	FILE	
S.No.	Depth from EGL (m)	OBSERVED SPT N-VALUE	CORRECTED SPT N- VALUE	DCPT v/s SPT N-va	alue Graph	Remarks
1	0.00	8.0	5.3			
2	0.30	10.0	6.7			
3	0.60	12.0	8.0			
4	0.90	13.0	8.7		OBSERVED -	Corrected N-Value
5	1.20	15.0	10.0			
6	1.50	17.0	11.3			
7	1.80	19.0	12.7			
8	2.10	24.0	16.0			
9	2.40	27.0	18.0			
10	2.70	32.0	21.3			
11	3.00	39.0	26.0			
12	3.30	47.0	31.3			
13	3.60	52.0	34.7			
14	3.90	53.0	35.3		Y	
15	4.20	63.0	42.0		4	
16	4.50	64.0	42.7			
17	4.80	68.0	45.3		1	
18	5.10	77.0	51.3		1	
19	5.40	85.0	56.7	_		
20	5.70	89.0	59.3			
21	6.00	92.0	61.3	<u>_</u>		
22	6.30	99.0	66.0			
23	6.60	105.0	70.0	<u>_</u>		
24	6.90	109.0	72.7			
25	7.20	115.0	76.7			
26	7.30	R	R			

	1	SOTONÉ	ENGINEER	RING CONSULTANTS	Job No	Page No.
ENGINEERING	CONSULTANTS	SOIGNE	ENGINEER	and consultants	GT-1764	
PROJECT	:- Construction	on of AIIMS at	Guntur, Andhr	a Pradesh	DCPT NO.	9
Client :- D	Deputy Genera	al Manager (Civ	vil), HSCC (I) L	td		
ocation :	:	As per location	n map		Starting Depth	E.G.L.
				Te	rmination Depth	8.10 m
		Penetrat	tion Value	DCPT 'N' PR	OFILE	
S.No.	Depth from EGL (m)	OBSERVED SPT N- VALUE	CORRECTED SPT N- VALUE	DCPT v/s SPT N-v	value Graph	Remarks
1	0.00	8.0	5.3			
2	0.30	10.0	6.7			
3	0.60	13.0	8.7	19		
4	0.90	15.0	10.0		ODCEDVED.	Compared NIVA
5	1.20	16.0	10.7		OBSERVED -	Corrected N-Value
6	1.50	20.0	13.3			
7	1.80	23.0	15.3	7 7		
8	2.10	26.0	17.3			
9	2.40	32.0	21.3	1 7 7		
10	2.70	35.0	23.3			
11	3.00	44.0	29.3			
12	3.30	46.0	30.7			
13	3.60	52.0	34.7			
14	3.90	60.0	40.0			
15	4.20	68.0	45.3		X	
16	4.50	79.0	52.7		9	
17	4.80	83.0	55.3	1 + + + + + + + + + + + + + + + + + + +	 	
18	5.10	86.0	57.3		A	
19	5.40	95.0	63.3			
20	5.70	96.0	64.0		4	
21	6.00	104.0	69.3		 	
22	6.30	105.0	70.0		4	
23	6.60	118.0	78.7		 	
24	6.90	119.0	79.3			4
25	7.20	125.0	83.3			A
26	7.50	135.0	90.0			R
27	7.80	139.0	92.7			7
28	8.10	R	R			

		SOTONÉ	ENGINEER	ING CONSULTANTS	Job No	Page No.
SOIGNE ENGINEER		GT-1764				
PROJECT	:- Constructi	on of AIIMS at	Guntur, Andhra	a Pradesh	DCPT NO.	10
Client :- [Deputy Gener	al Manager (Ci	vil), HSCC (I) L	td		
Location	:	As per locatio	n map		Starting Depth	E.G.L.
				Ter	mination Depth	7.60 m
		Penetra	tion Value	DCPT 'N' PRO	FILE	
S.No.	Depth from EGL (m)	OBSERVED SPT N-VALUE	CORRECTED SPT N- VALUE	DCPT v/s SPT N-va	alue Graph	Remarks
1	0.00	8.0	5.3			
2	0.30	10.0	6.7			
3	0.60	11.0	7.3			
4	0.90	15.0	10.0		OBSERVED -	Corrected N-Value
5	1.20	16.0	10.7			Corrected II Tollad
6	1.50	21.0	14.0			
7	1.80	26.0	17.3			
8	2.10	29.0	19.3			
9	2.40	32.0	21.3			
10	2.70	38.0	25.3			
11	3.00	42.0	28.0			
12	3.30	47.0	31.3			
13	3.60	50.0	33.3			
14	3.90	53.0	35.3			
15	4.20	59.0	39.3			
16	4.50	66.0	44.0			
17	4.80	68.0	45.3	-	8	
18	5.10	79.0	52.7			
19	5.40	82.0	54.7		Q	
20	5.70	93.0	62.0	_	 	
21	6.00	98.0	65.3	-		
22	6.30 6.60	99.0	66.0 70.0			
		105.0	<u> </u>	-		R
24 25	6.90 7.20	109.0 115.0	72.7 76.7	-		
26	7.50	126.0	84.0	-		8
27	7.60	120.0 R	84.0 R	-		

	A.	SOTONÉ	ENCINEED	ING CONSULTANTS	Job No	Page No.
AND THE COURSE	CONSULTANTS	SOIGNE	ENGINEER	ING CONSULTANTS	GT-1764	
PROJECT	:- Constructi	on of AIIMS at	Guntur, Andhra	a Pradesh	DCPT NO.	11
Client :- [Deputy Gener	al Manager (Ci	vil), HSCC (I) L	td		
Location	:	As per locatio	n map		Starting Depth	E.G.L.
				Ter	mination Depth	7.60 m
		Penetra	tion Value	DCPT 'N' PRO	FILE	
S.No.	Depth from EGL (m)	OBSERVED SPT N-VALUE	CORRECTED SPT N- VALUE	DCPT v/s SPT N-va	alue Graph	Remarks
1	0.00	7.0	4.7			
2	0.30	9.0	6.0			
3	0.60	12.0	8.0			
4	0.90	14.0	9.3		OBSERVED -	Corrected N-Value
5	1.20	17.0	11.3		9 0001.1420 =	Concecco in Value
6	1.50	20.0	13.3			
7	1.80	27.0	18.0	The state of the s		
8	2.10	30.0	20.0			
9	2.40	33.0	22.0			
10	2.70	39.0	26.0			
11	3.00	43.0	28.7			
12	3.30	48.0	32.0			
13	3.60	52.0	34.7			
14	3.90	56.0	37.3			
15	4.20	59.0	39.3			
16	4.50	65.0	43.3	1		
17	4.80	69.0	46.0			
18	5.10	76.0	50.7			
19	5.40	81.0	54.0	4		
20	5.70	89.0	59.3			
21	6.00	93.0	62.0	_		
22	6.30	98.0	65.3			
23	6.60	103.0	68.7	4		
24	6.90	106.0	70.7			
25	7.20	112.0	74.7	_		
26	7.50	121.0	80.7			
27	7.60	R	R			

and the state of t	CONSULTANTS	SOIGNÉ	ENGINEER	Job No GT-1764	Page No.		
PROJECT :- Construction of AIIMS at Guntur, Andhra				a Pradesh	DCPT NO.	12	
Client :- [Deputy Gener	al Manager (Ci	vil), HSCC (I) L	td			
Location	:	As per locatio	n map		Starting Depth	E.G.L.	
				Ter	rmination Depth	8.10 m	
		Penetra	tion Value	DCPT 'N' PRO	OFILE		
S.No.	Depth from EGL (m)	OBSERVED SPT N-VALUE	CORRECTED SPT N- VALUE	DCPT v/s SPT N-value Graph		Remarks	
1	0.00	8.0	5.3				
2	0.30	11.0	7.3				
3	0.60	12.0	8.0				
4	0.90	16.0	10.7		ORCEDVED	Compared N Volve	
5	1.20	16.0	10.7		OBSERVED -	Corrected N-Value	
6	1.50	19.0	12.7				
7	1.80	25.0	16.7				
8	2.10	29.0	19.3				
9	2.40	33.0	22.0				
10	2.70	36.0	24.0				
11	3.00	46.0	30.7				
12	3.30	49.0	32.7				
13	3.60	56.0	37.3				
14	3.90	59.0	39.3				
15	4.20	69.0	46.0				
16	4.50	82.0	54.7		9		
17	4.80	86.0	57.3	1			
18	5.10	89.0	59.3		8		
19	5.40	96.0	64.0				
20	5.70	101.0	67.3				
21	6.00	105.0	70.0		+ >		
22	6.30	109.0	72.7				
23	6.60	115.0	76.7			4	
24	6.90	120.0	80.0				
25	7.20	129.0	86.0				
26	7.50	136.0	90.7				
27	7.80	142.0	94.7				
28	7.90	R	R		_		